Aggregate tables with Firebird
Well-performing queries in OLAP scenarios with aggregate tables

Thomas Steinmaur er

(Originally published in German in “ Entwickler Magazin” Edition 05.2008)

How many units of a particular product have been sold in Europe in Q1/2008? What was
the sales volume of my subsidiary on the Island of Fiji in 20077 These are typical business
critical questions, which management may demand from the back office. To answer these
questions, the relevant data volume can be > 100 million records, especially for abig,
world-wide operating company. Processing must be — of course—fast. For anIT
department head or for a database administrator, this is quite a common requirement. Y ou
want to spend >20K Euro on licenses for “well-known” commercial database management
systems (DBMS) to handle this requirement? No? Then read on.

The queries mentioned in theintroduction aretypical for OLAP (Online Analytical Processing)
scenarios. From atechnical implementation point-of-view, thisisusualy done with a Data
Warehouse [1] (DWH). In such a system, aggregates play a very important role, because an OLAP
guery isusualy an aggregated view on existing (relational) data. In SQL, you are probably familiar
with aggregate functions like: COUNT, SUM, AVG, MIN and MAX.

This article shows how to speed up aggregated queries by using pre-aggregated data. It explains
the concepts behind this, and describes a not that typical application domain for data warehousing. It
is an entire solution based on Open Source technology, using the Firebird [2] DBMS and Mondrian
[3], an Open Source OLAP Server. Mondrian does not have its own (multi-dimensional) storage
engine, but follows the relational OLAP (ROLAP) paradigm, namely accessing datain an existing
relational database.

Industrial DWH

The most common application domain for DWH is still: ” Everything related to sales statistics’.
Thisistrue, but not anecessity. Industrial manufacturing is an excellent example of a different
application domain, where DWH concepts and implementations can also be applied. . Large amounts
of process and measurement data, which are generated during a production process, must be
integrated in a DWH for further analysis tasks. Important goals for the usage of a DWH in this
application domain are:

Improving the production process to minimize the frequency of faulty parts

Trend/prediction analysis for durability of eectric devices, which are used in thefield by the

customer

In both cases, the required data needs to be collected and integrated in a DWH and prepared for
further data analysis tasks. Take for exampl e the following question: “Give me the measured average
temperature for a particular device for the year 2008, aggregated by the quarter.” If the average
temperature is close to the maximum allowed temperature according to the device specification,
durability of this device might be less, compared to using the device in other temperature ranges.

Anybody in the DWH?
The question clearly involves different kinds of data, which are relevant for data analysis tasks.
For example:

Aggregate tables with Firebird — Page 1/8

Uniquely identifiable device across the entire system

Measurement value type (e.g. temperature, current, voltage)

Measured value (e.g. 60 degree Celsius)
Date/ Time (e.g. 11.11.2007 / 15:34:32)

In aDWH, thiswill be modeled as a so-called star schema, which isillustrated in Figure 1.

DIM_DATE
& DIM_DATE_ID DATE
< DIM_DATE_YEAR SMALLINT

< DIM_DATE_QUARTER SMALLINT
7 DIM_DATE_MONTH SMALLINT
<7 DIM_DATE_DAY SMALLINT

DIM_VALUE_TYPE (L

& DIM_vALUE_TYPE_ID
& DIM_VALUE_TYPE_MNAME WARCHAR (403

BIGINT

DIM_DEVICE

)

FACT_MEASURED_VALUE
& FACT_MEASURED_VALUE_ID BIGINT

% DIM_DEVICE_ID BIGINT
% DIM_DATE_ID DATE
% DIM_TIME_ID TIME
% DIM_YALUE_TYPE_ID BIGINT

“# MEASURED_VALUE DOUBLE PRECISION

DIM_TIME

& DIM_TIME_ID TIME

DIM_TIME_HOUR SMALLINT
& DIM_TIME_MINUTE SMALLINT
T & DIM_TIME_SECOND SMALLINT

¥ DIM_DEVICE_ID
< DIM_DEVICE_NAME YARCHAR(40)

BIGINT

Figure 1: Star-Schema

The tables used are described in the following Table 1.

Table1: Tablesof the star-schema

Table Usage
DIM_DATE Dimension table Date.

One record is a valid date with a year, quarter, month and day.
DIM_TIME Dimension table Time.

One record is a valid time with an hour, minute and second.
DIM_DEVICE Dimension table Device.

One record uniquely identifies a device in the DWH.

DIM_VALUE_TYPE

Dimension table measurement value type.
One record is a type of measurement value. For example:
temperature, current or voltage.

FACT_MEASURED_VALUE

Fact table.

Stores the factum/measure, which needs to be analyzed. In our case
this is a measured value of a particular type
(DIM_VALUE_TYPE_ID) for a particular device (DIM_DEVICE_ID)

Aggregate tables with Firebird — Page 2/8

at a specific timestamp (DIM_DATE_ID and DIM_TIME_ID).

Therequirements on an OLTP and OLAP database usually differ in respect to the number of
concurrent connections, availability and configuration, so both systems are operated with their own
separate databases. L oading the dimension tables and the fact table is done with an ETL (extraction,
transformation, loading) process, which extracts the necessary data from the OLTP system,
transforms the data based on defined rules for the target system und loads the datainto the OLAP
database.

In this example, | have not implemented an ETL process, but Open Source products, like Kettle
[4], are available for that also. For thisarticle, a configurable loading of the dimension tables and the
fact table is done with Firebird stored procedures. To get a meaningful answer in respect to the
execution time and the Non-Indexed vs. Index-Reads with and without aggregate tables, at least the
fact table FACT_MEASURED_ VALUE must be loaded with a substantial number of records. Table
2 shows the result after |oading datainto our OLAP database.

Table 2: Fill statistic of thetablesin the star-chema

Table Usage
DIM_DATE Loading for the year 2008.
=> 366 records.
DIM_TIME Loading for a day with second being the smallest unit.
=> 24 * 60 * 60 = 86.400 records.
DIM_DEVICE Three devices.
=> 3 records.
DIM_VALUE_TYPE Three measurement value types: voltage, current and temperature.
=> 3 records.

FACT_MEASURED_VALUE | For the entire year 2008, for every minute a record with a measured
value will be generated for each device and each measurement
value type.

=> 366 *24* 60 * 3 * 3 =4.743.360 records.

To answer the question described above, a database devel oper can formulate an appropriate
SQL query againgt the OLAP database or one can use an OLAP client application, which allows the
guery to be defined in a visual way through user interaction. The user is ableto drill-down through
the device and date dimensions to “navigate’ to the expected result. This can be accomplished, for
example, with a JPivot-based web application as shown in Figure 2.

Aggregate tables with Firebird — Page 3/8

Measures

Average Measured Yalue

Value Type

Device Date Time ¢ Temperature
~All Devices +All Dates | +All Times 19,997
Device 1 |=All Dates |+aAll Times 19,959
=2008 +All Times 19,959
+1 +all Times 19,985
+2 +All Times 20,065
+3 +all Times 19,905
‘ +4 +all Times 19,883
Device 2 |+All Dates +All Times 19,995
Device 3 |+All Dates |+All Times 20.036

Figure 2: JPivot-based web application

Thered arrows show the possible navigation path in both dimensions. By using the activated
statement tracing in Mondrian, the executed SQL statements can be identified pretty quickly.
Without using any aggregate tables, the SQL statement looks like:

sel ect

"Dl M_VALUE_TYPE". "DI M_VALUE_TYPE_NAME" as "cO0",

"DI M_DATE". "Dl M_DATE_YEAR' as "cl1",

"Dl M_DATE". " DI M_DATE_QUARTER' as "c2",

"Dl M_DEVI CE". "Dl M_DEVI CE_NAME" as "c3",

avg(" FACT_MEASURED VALUE"." MEASURED VALUE') as "noD"
from

"DI M_VALUE_TYPE" "DI M_VALUE_TYPE",

" FACT_MEASURED VALUE" "FACT_MEASURED VALUE",

"DI M_DATE" " DI M_DATE",

"Dl M_DEVI CE" " DI M_DEVI CE"

wher e

"FACT_MEASURED VALUE"."DI M VALUE_TYPE ID' = "DI M VALUE_TYPE". "Dl M VALUE_TYPE_I| D'
and

"Dl M_VALUE_TYPE"."DI M_VALUE_TYPE_NAME" = ' Tenperature' and

" FACT_MEASURED VALUE"."DI M DATE_| D' = "DI M DATE". "Dl M_DATE_| D' and

"Dl M_DATE". " DI M_DATE_YEAR' = 2008 and

" FACT_MEASURED VALUE"."DI M DEVICE_ID' = "Dl M DEVICE". "Dl M DEVI CE_I D' and

"Dl M_DEVI CE". " DI M_DEVI CE_NAME" = 'Device 1'
group by

"Dl M_VALUE_TYPE". " DI M_VALUE_TYPE_NAME",
"Dl M_DATE". " DI M_DATE_YEAR',

"Dl M_DATE". " DI M_DATE_QUARTER",

"Dl M_DEVI CE". " DI M_DEVI CE_NAME"

Listing 1. OLAP SQL query without aggregate table usage

If | execute the SQL statement in atool with my Desktop-PC, then | get the result back in
approx. 1 minute and 17 seconds. The indexed vs. non-indexed reads for this SQL query in Figure 3
show an interesting result, namely a lot of indexed-reads on different tables. The DBMS has quite
some work to do to return the expected result set.

Takle | Mon-Indexed | Indesxed |Updstes| Deletes | Inserts |
Din_DATE 527.040

FACT MEASURED W ALLE 1.581.120

DM _ALLE_TYPE 1.581.120

Di_DEYICE 1

Figure 3: Indexed vs. Non-Indexed reads without aggregate table

Aggregate tables with Firebird — Page 4/8

Aggregate tables as afterburner

The concept of an aggregate table is not anew devel opment in the area of database
technologies. “Enterprise-capable” DBMSs like Oracle, DB2 or Microsoft SQL Server support the
persistence of aresult set from a query, including different update strategies, in the event that the
data in the base-table(s) changes. DBM S vendors often refer to this as Materialized Views or |ndexed
Views. Inthisarticle, | will use theterm “aggregate table”’, unless | am referring to a DBM S-specific
implementation.

The main task of an aggregate table, based on an access pattern, isto storetheresult setin a
physical table with far fewer records than the base table. In our case, the access patternis the
aggregation of the fact table through the date dimension down to the quarter level. Furthermore,
perhaps an additional requirement exists from the QA department that queries down to the month
level should run with good performance as well. The aggregate schemarequired for thisis shown in
Figure 4.

DIM_DATE FIMV_DELTA
fP DiM_DATE_ID DATE & FMy_DELTA_ID BIGINT
“» DIM_DATE_YEAR ShALLINT < DATE_TIME TIMESTAMP
“ DIM_DATE_QUARTER SMALLINT o <oeed <2 EVENT_TYPE CHAR(1)
& Dim_DATE_MONTH SMALLIMT i TRAMSACTION_ID BIGINT
& DIM_DATE_D&Y SMALLIMNT < PROCESSED ShtALLINT
2 FACT_MEASURED_WALUE_ID BIGINT
S ECEEEEEEE o] !En DIM_DEWICE_ID BIGINT
| % DIM_DATE_ID DATE
! % DIM_TIME_ID TIME
T % DIv_WALUE_TYPE_ID BIGINT
DIM_DEVICE “# OLD_MEASURED_WALUE DOUBLE PRECISION
% DIM_DEVICE_ID BIGINT “ MEW_MEASURED_WALIIE OOUBLE FRECISION

< DIM_DEVICE_NAME VARCHAR(40)

L4

—— e

DIM_VALUE_TYPE DIM_TIME
DIM_vALUE_TYPE_ID BIGIMNT & DIM_TIME_ID TIME
& DIM_VALUE_TYPE_NAME YARCHAR{4D) ZDIM_TIME_HOUR SMALLINT

& DIM_TIME_MINUTE SMALLINT
2 DIM_TIME_SECOMD SMALLINT

AGG_FACT_FNV_MONTH

(%R DIM_DEVICE_ID BIGINT 1
DIM_DATE_YEAR SMALLINT
¥ DIM_DATE_QUARTER SMALLINT
DIM_DATE_MONTH SMALLINT
L] FDIM_VALUE_TYPE_ID BIGINT

< MIN_MEASURED_VALUE DOUBLE PRECISION
0 MAX_MEASURED_WALUE DOUBLE PRECISION
2 MVG_MEASURED_WALUE DOUBLE PRECISION
2 SUM_MEASURED_YALUE DOUBLE PRECISION
L\") COUNT_MEASURED_VALUE BIGINT

Figure 4: Aggregate Schema

The aggregate table AGG_FACT_FMV_MONTH isadightly changed version of your fact
table from the star-schema. The date dimension down to the month level is collapsed into the
aggregate table and is not referenced by a foreign key constraint to the dimension table DIM_DATE
anymore. Additionally, the pre-cal culated aggregates MIN, MAX, AVG, SUM and the number of
relevant records are stored in the aggregate table as well. Thetable FMV_DELTA isdedt with later,
when different loading and update strategies of the aggregate table are discussed. For the time being,

Aggregate tables with Firebird — Page 5/8

we simply assume a correctly loaded aggregate table. The performance when using the aggregate
table to answer the same question now looks much more promising. The following listing shows the
executed SQL statement.

sel ect
"Dl M_VALUE_TYPE". " DI M_VALUE_TYPE_NAME" as "cO0",
"AGG_FACT_FWMW_MONTH'. " DI M_DATE_YEAR' as "cl",
"AGG_FACT_FMW_MONTH'. " DI M_DATE_QUARTER' as "c2",
"Dl M_DEVI CE". "Dl M_DEVI CE_NAME" as "c3",
sun(" AGG_FACT_FMV_MONTH'. " AVG_MEASURED_VALUE" *
" AGG_FACT_FMW_MONTH". " COUNT_MEASURED VALUE") /
sum(" AGG_FACT_FMV_MONTH' . " COUNT_MEASURED_VALUE") as "nD"
from
"DI M_VALUE_TYPE" "DI M_VALUE_TYPE",
" AGG_FACT_FMV_NONTH' " AGG FACT_FM/_MONTH',
"Dl M_DEVI CE" " DI M_DEVI CE"
wher e
" AGG_FACT_FMV_MONTH'. " DI M VALUE_TYPE | D' = "D M VALUE_TYPE". " DI M VALUE_TYPE_| D'
and
"Dl M_VALUE_TYPE". "DI M_VALUE_TYPE_NAME" =
" AGG_FACT_FMV_MONTH'. " DI M_DATE_YEAR' = 2008 and
" AGG_FACT_FMV_NMONTH'."DIM DEVICE_ID' = "DI M DEVI CE"."DI M DEVI CE_I D' and
"Dl M_DEVI CE". " DI M_DEVI CE_NAME" = 'Device 1'
group by
"Dl M_VALUE_TYPE". " DI M_VALUE_TYPE_NAME",
" AGG_FACT_FMV_NONTH'. " DI M_DATE_YEAR",
" AGG_FACT_FMV_NONTH'. " DI M_DATE_QUARTER",
"Dl M_DEVI CE". " DI M_DEVI CE_NAME"

Listing 2: OLAP SQL query with aggr egate table usage

' Tenperature' and

As you can see, the aggregatetable AGG_FACT_FMV_MONTH and not the fact table
FACT_MEASURED_VALUE isnow used to get the expected result set, for the same drill-down
user interaction. This SQL statement executed with atool shows that the result set isreturned in 30
milliseconds. The dramatically decreased number of readsisshown in Figure 5.

Takle | Mon-Indexed | Indexed | Updates | Deletes | Inzers |
Din_DEYICE 36

A5G FACT Fhy MONTH 6

DI _WALLE_TYPE 1

Figure 5: Indexed vs. Non-Indexed reads with aggregate table

Not a big surprise though, because the aggregate table holdsonly 12 * 3* 3 = 108 records
compared to 4.743.360 records in the fact table. Thisisa very beneficial optimization for this
particular OLAP scenario.

Query Rewriting

Mondrian needs to know in the OLAP cube definition file that an aggregate table exists for the
fact table. If this definition has been done properly, the OLAP server isable to transform the initial
guery so that the aggregate table and not the fact table will be queried. This mechanismiscalled
Query Rewriting, which is an important component when using aggregate tables, because it ensures
transparency for the user when using an OLAP client. The user should not need to know that thereis
an aggregate table. He/she simply fires off an OLAP query viaa user-friendly OLAP client
application and the OLAP server takes care of choosing the appropriate aggregate or fact table(s) for
processing the query. If this component is clever, it can use an aggregate table even if thereisno 1:1
mapping between the aggregated query and an existing aggregate table. For example, Mondrian is
able to use our month-based aggregate table to carry out a quarter-based OLAP query.

Aggregate tables with Firebird — Page 6/8

If query rewriting is not supported by the OLAP server, then the usage of an aggregatetableis
not trangparent to the user, because the user needs to know which aggregate tables exist in order to
formulate the correct query. Be aware that many DBM S vendors support query rewriting in their
high-priced “ Enterprise-capable” editions only, even if they support materialized or indexed viewsin
their less expensive editions!

Firebird asa DBM S does not support query rewriting at all. In our DWH architecture, another
component isresponsible for that, namely Mondrian. The user does not need to know about the
existence of aggregate tables. Mondrian handles that behind the scenes.

Update strategies

With awell-designed aggregate schema, you can achieve a high performance gain, but, some
compromiseis necessary, because it doesn’t make sense to create an aggregate table for each
possible query in your DWH environment. For example, you might choose to concentrate on the
most used OLAP queries and improve their performance with aggregate tables first. Simply create
your aggregate schema driven by real-use requirements.

With the introduction of aggregate tables, one is confronted with one topic pretty quickly,
namely redundancy. In the case of aggregate tables, possibly the most important factor is whether
pre-aggregated datais as up-to-date as the on-the-fly aggregate calculation of a query against the fact
table. If datain the fact table gets changed, pre-aggregated datain an aggregate table is out-dated
automatically. As aresult, querying an aggregate table might produce a different result set than
guerying the fact table. Primarily, there are three different update strategies discussed in the
literature and used in real-life DWH environments. Shapshot, Eager and Lazy.

When using the snapshot strategy, datain the aggregate table gets fully rebuilt by deleting and
re-inserting records with up-to-date aggregations. Theimplementation of this strategy is very ssimple,
but server utilization during a snapshot load increases with the number of recordsin the fact table. A
snapshot load is usually done periodically, for example after loading the fact table with an ETL
process. Starting a snapshot load could be the last action in an ETL process.

For the eager strategy, there isade ete/insert/update trigger on the fact table for each dependent
aggregate table, which basically has some logic in place to re-cal culate aggregates incrementally.
The aggregate table does not need to be re-built from scratch every time, but the trigger smply
updates the existing pre-aggregated val ues with the new values from the fact table accordingly. The
implementation of this strategy is more complex, but still possible. A disadvantage of this approach
isthat the execution time of the ETL process is slower, because with each COMMIT the trigger on
the fact table getsfired. The main advantage isthat pre-aggregated data is always in-sync with the
fact table.

The lazy approach has one trigger on the fact table, which logs any data changes on the fact
table into a separate table (see table FMV_DELTA in Figure 4). Periodicaly, a sored procedure
processes the log table and for each non-processed record, the eager mechanism gets executed. With
this approach, there are again additional write operations necessary, namely into thelog table, but
the incremental update of pre-aggregated data can be done at alater, possibly better point of time.
This approach is amixture of the other two in respect to up-to-date data in the aggregate table(s) and
server utilization.

Conclusion

Aggregate tables with Firebird — Page 7/8

Aggregate tables are a very interesting possibility to dramatically reduce the response time of
aggregate queries in OLAP scenarios. DBMSs like Oracle, DB2 and Microsoft SQL Server have
implementations for aggregate tables called Materialized or Indexed Views. Firebird currently
(Version 2.1) does not have a comparable feature, but with support for triggers and stored
procedures, Firebird can serve asa DBMS for a hand-made aggregate table implementation,
including all three update strategies mentioned above. One gets an aggregate schema which has data
redundancies, but they areall controllable. In combination with an OLAP server like Mondrian with
support for query rewriting, alow-cost DWH system can be built entirely on top of Open Source
software, which is suitable even for larger DWH projects.

Thomas Steinmaurer works as an Indusrial Researcher at the Software Competence Center
Hagenberg (SCCH; Austria) [5] in the area of data management and data warehousing in the
industrial application domain. Furthermore, heis responsible for the LogManager Series at
Upscene Productions [6] . He isa co-founder of the Firebird Foundation [7]. The author can be
contacted via one of the following email addresses. thomas.steinmaurer @scch.at or

t.stei nmaur er @upscene.com.

Links & Literature

[1] http://en.wikipedia.org/wiki/Data warehouse

[2] http://www.firebirdsgl.org

]
]
[3] http://mondrian.pentaho.org
[4] http://kettle.pentaho.org
]
]
]

[5] http://www.scch.at

[6] http://www.upscene.com

[7] http://www.firebirdsal.org/index.php?op=ffoundation

Aggregate tables with Firebird — Page 8/8

